obtained from a given one-step method by averaging the last k-iterates. Results on the domains of convergence and acceleration are obtained, both of which may be much larger than the domain of convergence of the original method.
4. Wacker, H. J.: A method for nonlinear boundary value problems. To solve the operator equation $T(y)=0$, the problem is embedded in a family $T(s, y)=0$ with $0 \leqq s \leqq 1$, and such that $T(0, y)=0$ is easily solvable, and such that $T(1, y)=$ $T(y)$. For a sequence of s 's, the solution for s_{i} can be used as a starting value for the computation at s_{i+1}.

Larry L. Schumaker

Department of Mathematics
University of Texas
Austin, Texas 78712

18[2.10].-V. I. Krylov \& A. A. Pal'tsev, Tables for Numerical Integration of Functions with Logarithmic and Power Singularities, translated from Russian, Israel Program for Scientific Translations, Jerusalem, 1971, iv + 172 pp., 25 cm . Price \$10.—.

The original edition of these tables was published in 1967 by the "Nauka i Tekhnika" Publishing House in Minsk.

Herein are tabulated the elements of four Gaussian quadrature formulas involving the respective weight functions $x^{\alpha} \ln (e / x), x^{\beta} \ln (e / x) \ln [e /(1-x)], \ln (1 / x)$, and $x^{\beta} e^{-x} \ln \left(1+x^{-1}\right)$. The range of integration for the first three is the interval $(0,1)$, while that for the fourth is $(0, \infty)$. The tabular points (nodes) and corresponding weight coefficients are uniformly presented to 15 S in floating-point format, and the number of points extends from 1 to 10 , inclusive. In Table 1 the exponent α assumes the values $-0.9(0.01) 0(0.1) 5$, while in Tables 2 and 4 the exponent β assumes the values $0(1) 5$.

Only the material in Table 3 appears to have been published elsewhere. An 8S table was given by Anderson [1] and an extensive 30S table appears in the book of Stroud \& Secrest [2], which confirms the accuracy of Table 3.

Two examples of the application of Table 1 are presented, and interpolation with respect to α in that table is discussed in detail.

A bibliography of six items contains a reference to the paper of Anderson but not to the work of Stroud \& Secrest, which presumably was not available to the authors.
J. W. W.

1. D. G. Anderson, "Gaussian quadrature formulae for $\int_{0}{ }^{1}-\ln x f(x) d x$," Math. Comp., v. 19, 1965, pp. 477-481.
2. A. H. Stroud \& Don Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J., 1966. (See Math. Comp., v. 21, 1967, pp. 125-126, RMT 14.)

19[2.20].-B. Dejon \& P. Henrici, Editors, Constructive Aspects of the Fundamental Theorem of Algebra, John Wiley \& Sons, New York, 1969, vii +337 pp., 23 cm . Price $\$ 9.95$.

These papers are the published proceedings of a symposium held on June 5-7,

